Covert Cryptography and Steganography

J M Blackledge

Stokes Professor
Dublin Institute of Technology
http://eleceng.dit.ie/blackledge

Distinguished Professor
Warsaw University of Technology

Friday 12th March, 2010: 11:00 -13:00

Lectures co-financed by the European Union in scope of the European Social Fund
What is the Problem?

Alice A

Message

Bob B

Attack?
F7&^%p£#29hGS

Attack What?
Have a nice day
Covert Encryption

Information Hiding

Related issues include:

- Camouflage
- Disinformation
- Authentication
- Self-authentication
Steganography (Greek in origin) means *Covered* or *Concealed Writing*

At what time should I confirm our activities? kindly acknowledge.

11000001000
1100000000000010000010001110000000

Attack now
Watermarking and Authentication

[Diagram showing processes of digital watermarking in print, on web, and in ID card, with examples of content delivered and content tracked.]
Camouflage and Disinformation
Why Should Encrypted Information be Transmitted Covertly?
Focus of the Seminar

- **AudioCode**: Steganography for Digital Signals

![AudioCode](image)

- **StegoCrypt**: Steganography for Digital Images

![StegoCrypt](image)
Principal Publications

Contents of Presentation I

Part I:

- Principles of Steganography
- Signal Processing Model for Information Hiding
- Linear Frequency Modulation
- Chirp Coding
- Self-authentication
- Demonstration of Self-Authentication for Audio data
- Summary
- Interval (10 Minutes)
Part II:

• Hiding Information in Digital Images
• Fresnel Diffusion
• Stochastic Diffusion
• Demonstration of StegoCrypt
• Hardcopy Authentication
• Summary
• Research Project Proposals
• Q & A
Principals of Steganography

Data \rightarrow Covertext
\downarrow
Stegotext
\downarrow
Transmission

Plaintext \rightarrow Ciphertext
Hiding Data in Images

\[\text{Stegotext image} = \text{Covertext image} + \text{Plaintext image} \]
Information Hiding: A Signal Processing Model

\(f \) - Information input (Plaintext or Ciphertext)
\(s \) - Output signal (Stegotext)
\(n \) - Noise (Covertext - cover signal including a cipher)
\(\hat{P} \) - Linear transformation operator (signal processor)

\[
s(t) = \hat{P} f(t) + n(t), \quad ||\hat{P} f(t)|| << ||n(t)||
\]

Diffusion + Confusion Hiding condition
Information Retrieval 1: **Diffuser/Covertext Retrieval**

\[f = \hat{P}^{-1}(s - n) \]

- Requires knowledge of both *processor* and *covertext*
- Inverse operator must be computationally stable
- If the *covertext* is a *cipher*, then retrieval is dependent on knowledge of a *private key*
Information Retrieval 2: **Diffuser Only** Retrieval

\[f = \hat{P}^{-1}(s - n) = \hat{P}^{-1}s - \hat{P}^{-1}n = \hat{P}^{-1}s \]

- Requires knowledge of processor only
- Any *covertext* can be used provided \(\hat{P}^{-1}n = 0 \)
- Require a diffuser such that:
 - the inverse operator is computationally stable
 - simple to implement
Chirp based Diffusion

- A diffuser that provides these properties is a linear frequency modulated (FM) chirp.

- In complex form, a linear FM chirp is given by

\[\exp(i\alpha t^2) \]

- Operator is based on convolution

- Inverse operator is based on correlation
Linear Frequency Modulation

Let

\[\hat{P} f(t) = p(t) \otimes f(t) \equiv \int_{-\infty}^{\infty} p(t - \tau) f(\tau) d\tau \]

where

\[p(t) = \exp(i\alpha t^2), \quad |t| \leq \frac{T}{2} \]

Then

\[\hat{f}(t) = \exp(-i\alpha t^2) \otimes \exp(i\alpha t^2) \otimes f(t), \quad |t| \leq \frac{T}{2} \]

where

\[p(t) \otimes f(t) \equiv \int_{-\infty}^{\infty} p(t + \tau) f(\tau) d\tau \]
Evaluation of the Correlation Integral

\[
\exp(-i\alpha t^2) \odot \exp(i\alpha t^2) \equiv \int_{-T/2}^{T/2} \exp[-i\alpha(\tau + t)^2] \exp(i\alpha \tau^2) d\tau
\]

\[
= \exp(-i\alpha t^2) \int_{-T/2}^{T/2} \exp(-2i\alpha t \tau) d\tau = T \exp(-i\alpha t^2) \text{sinc}(\alpha T t)
\]

where

\[
\text{sinc}(x) \equiv \frac{\sin x}{x}
\]
Application of the Condition \(T \gg 1 \)

\[
\cos(\alpha t^2) \text{sinc}(\alpha T t) \sim \text{sinc}(\alpha T t)
\]

\[
\sin(\alpha t^2) \text{sinc}(\alpha T t) \sim 0
\]

\[
\hat{f}(t) = T \exp(-i\alpha t^2) \text{sinc}(\alpha T t)
\]

\[
\sim T \text{sinc}(\alpha T t) \otimes f(t)
\]
Spectral Response

- In Fourier space (ignoring scaling constant)

\[\hat{F}(\omega) = \begin{cases} F(\omega), & |\omega| \leq \alpha T; \\ 0, & |\omega| > \alpha T. \end{cases} \]

- Retrieved information is a \textit{band-limited} version of the input signal

- \textit{Band-width} is determined by αT
Retrieval with Covertext

\[s(t) = \exp(i\alpha t^2) \otimes f(t) + n(t) \]

\[\hat{f}(t) \simeq T \text{sinc}(\alpha T t) \otimes f(t) + \exp(-i\alpha t^2) \circ n(t) \]

Provided the covertext does not have any features that match with \(n(t) \), then

\[\| T \text{sinc}(\alpha T t) \otimes f(t) \| >> \| \exp(-i\alpha t^2) \circ n(t) \| \]
Graphical Example
Why use Chirps?

\[s(t) = \exp(i\alpha t^2) \otimes f(t) + n(t) \]

\[\hat{f}(t) \approx T\text{sinc}(\alpha T t) \otimes f(t) \]
Microwave Imaging
Chirp Coding

Binary code

\[\text{chirp}(t) = a \cos(\alpha t^2), \quad \forall t \in [0, T) \]

\[s(t) = \begin{cases}
-\text{chirp}(t), & t \in [0, T); \\
+\text{chirp}(t), & t \in [T, 2T); \\
+\text{chirp}(t), & t \in [2T, 3T); \\
-\text{chirp}(t), & t \in [3T, 4T); \\
-\text{chirp}(t), & t \in [4T, 5T); \\
+\text{chirp}(t), & t \in [5T, 6T); \\
-\text{chirp}(t), & t \in [6T, 7T).
\end{cases} \]
Decoding

\[
s(t) \odot \text{chirp}(t) = \begin{cases}
-a, & t \in [0, T); \\
+a, & t \in [T, 2T); \\
+a, & t \in [2T, 3T); \\
-a, & t \in [3T, 4T); \\
-a, & t \in [4T, 5T); \\
+a, & t \in [5T, 6T); \\
-a, & t \in [6T, 7T).
\end{cases}
\]

Chirp function must be an identical replica of that used to chirp code the binary stream.
Applications

• Covert information exchange using digital signals
 - plaintext
 - ciphertext

• *Covert key exchange*

• Authentication of digital signals
 - Copyright protection
 - Digital Rights Management

• *Self-authentication of digital signals*
 - Speech
 - Audio
Self-authentication of Audio Data: \textit{The Problem}

\begin{align*}
 f(t) & \text{ - audio signal} \\
 w(t) & \text{ - watermark obtained from the audio signal} \\
 s(t) & \text{ - watermarked signal}
\end{align*}

Find transforms \hat{T} and \hat{L} where

\begin{align*}
 w(t) &= \hat{T} f(t) \quad \text{and} \quad s(t) = f(t) + \hat{L} w(t)
\end{align*}

such that

\begin{align*}
 \|\hat{L} w(t)\| &\ll \|f(t)\| \\
 \hat{T} s(t) &= w(t) \quad \text{and} \quad \hat{L}^{-1} s(t) = w(t)
\end{align*}

Signal Coding (?) \quad \text{Chirp Coding (OK)}
Signal Coding using the Wavelet Transformation

\[F_L(t) = \frac{1}{\sqrt{L}} \int f(\tau) W \left(\frac{t - \tau}{L} \right) d\tau \]

\[E_L = \frac{100}{E} \int |F_L(t)|^2 \, dt, \quad E = \sum_L E_L \]

Binary[Round(E_L)] is concatenated to produce a binary string which is then

Chirp Coded
Demonstration of an Audio Self-Authenticator: AudioCode

http://eleceng.dit.ie/arg/downloads/Audio_Self_Authentication.zip
Multilevel Watermarking
Perceptual Evaluation of Audio Quality: BS.1387
Commercials Applications

Technology to License

Self-authentication of Audio Data for Copyright Protection

Tamborine lives and breathes sound

Tamborine is 100% dedicated to audio post production for television programming and film: from children's programming to documentaries; from drama to animation; from movies to commercials.

It all happens under one roof, in our heart-of-Soho studios where we offer sound editing, ADR track-laying, voice-over recording (for up to 7 artists), Foley recording and the final mix - in either stereo or surround sound. All at extremely competitive rates.

Explore and enjoy the site and sounds of Tamborine now.

If you would like to receive a DVD showreel of some of our work please email us. We'd be delighted to send one to you.

http://www.tamborine.co.uk
On the Search for Extraterrestrial Intelligence

- Chirp coding provides a solution for communicating over ‘channels’ with very noisy environments

- Interstellar space becomes very noisy when radio waves propagate over many light years

- Suggests correlating SETI data with different chirp codes and searching for an output with minimum Information Entropy
Summary

- Covert encryption uses **Steganography** to hide encrypted information in a **Covertext**

- Chirp coding provides an effective method of hiding bit streams in digital signals which has many applications including
 - *key exchange*
 - *authentication and copyright protection*

- Chirp coding is unique in that it provides a method of **self-authenticating** a digital signal
In the Following Lecture…

• We shall investigate a method to hide encrypted information in digital images using the process of stochastic diffusion

• Consider an approach for e-fraud prevention of e-documents

• Investigate a method for authenticating hardcopy documents based on texture coding

• Provide a demonstration of the product
Questions

+ Interval (10 Minutes)
Contents of Presentation II

Part II:

• Hiding Information in Digital Images
• Fresnel Diffusion
• Stochastic Diffusion
• Demonstration of StegoCrypt
• Hardcopy Authentication
• Summary
• Research Project Proposals
• Q & A
Hiding Information in Digital Images
Basic Model

\[\text{stegotext} = \text{ciphertext} + \text{covertext} \]

\[\text{ciphertext} = \text{cipher} \otimes \otimes \text{plaintext} \]

\(\otimes\otimes\) denotes the 2D convolution integral

- **Ciphertext** generated by process of **Diffusion**
- **Stegotext** generated by process of **Confusion**
Consider a watermarking model given by

\[I_3(x, y) = r p(x, y) \otimes \otimes I_1(x, y) + I_2(x, y) \]

with ‘Fresnel’ Point Spread Function (PSF)

\[p(x, y) = \frac{1}{2} (1 + \cos[\alpha(x^2 + y^2)]) \]

and where

\[\|p(x, y) \otimes \otimes I_1(x, y)\|_{\infty} = 1 \quad \text{and} \quad \|I_2(x, y)\|_{\infty} = 1. \]
Watermark Retrieval

\[I_1(x, y) = \frac{1}{r} p(x, y) \circ \circ [I_3(x, y) - I_2(x, y)] \]

where \(\circ \circ \) denote two-dimensional correlation.

Implemented using a Fast Fourier Transform and application of the two-dimensional convolution and correlation theorems, i.e.

\[p \otimes \otimes f \iff PF \]

and

\[p \bullet \bullet f \iff P^*F \]

respectively, where \(\iff \) denotes transformation from ‘image space’ to ‘Fourier space’.
Example of Fresnel Watermarking
Stochastic Diffusion

\[E = mc^2 \]
Let \(n(x, y) \) be a cipher with Fourier transform \(N(k_x, k_y) \) and compute

\[
m(x, y) = \mathcal{F}_2^{-1} \left[\frac{N(k_x, k_y)}{|N(k_x, k_y)|^2} \right], \quad |N(k_x, k_y)|^2 > 0
\]

so that the diffused field is given by

\[
I(x, y) = m(x, y) \otimes I_0(x, y).
\]
How Does it Work? 2: Condition for Regularisation

\[\forall k_x, k_y \]

if \[|N(k_x, k_y)|^2 = 0 \]

then \[|N(k_x, k_y)|^2 = 1 \]
How Does it Work? 3: Data Retrieval

\[n(x, y) \odot \odot I(x, y) \iff N^*(k_x, k_y) \tilde{I}(k_x, k_y) \]

and

\[N^*(k_x, k_y) \tilde{I}(k_x, k_y) = N^*(k_x, k_y) M(k_x, k_y) \tilde{I}_0(k_x, k_y) \]

\[= N^*(k_x, k_y) \frac{N(k_x, k_y)}{|N(k_x, k_y)|^2} \tilde{I}_0(k_x, k_y) = \tilde{I}_0(k_x, k_y) \]

so that

\[I_0(x, y) = n(x, y) \odot \odot I(x, y). \]
How Does it Work? 4: **Covertext Model**

\[I_3(x, y) = rm(x, y) \otimes \otimes I_1(x, y) + I_2(x, y) \]

\[\| m(x, y) \otimes \otimes I_1(x, y) \|_\infty = 1 \text{ and } \| I_2(x, y) \|_\infty = 1 \]

- \(r \) is the **Diffusion-to-Confusion** watermarking ratio

- \(m \) is a **pre-conditioned** stochastic field

- \(n \) is a **key dependent cipher**
Further Example of Watermarking by Stochastic Diffusion
Image Data Diffusion
Data Redundancy

• For binary plaintext images, stochastic diffusion (with a grey level stochastic field) yields a field that is data redundant.

• The data field can therefore be binarized to compress the encrypted information
Algorithm I: Encryption and Watermarking Algorithm

Step 1: Read the binary plaintext image from a file and compute the size $I \times J$ of the image.

Step 2: Compute a cipher of size $I \times J$ using a private key and pre-condition the result.

Step 3: Convolve the binary plaintext image with the pre-conditioned cipher and normalise the output.

Step 4: Binarize the output obtained in Step 3 using a threshold based on computing the mode of the Gaussian distributed ciphertext.

Step 5: Insert the binary output obtained in Step 4 into the lowest 1-bit layer of the host image and write the result to a file.
Algorithm II: Decryption Algorithm

Step 1: Read the watermarked image from a file and extract the lowest 1-bit layer from the image.

Step 2: Regenerate the (non-preconditioned) cipher using the same key used in Algorithm I.

Step 3: Correlate the cipher with the input obtained in Step 1 and normalise the result.

Step 4: Quantize and format the output from Step 3 and write to a file.
StegoCrypt

http://eleceng.dit.ie/arg/downloads/StegoCrypt.zip

Document Authentication for Electronic Data Interchange

Dublin Institute of Technology (DIT) is seeking companies to license a novel technology that provides a facility for authenticating documents (letters, certificates, spreadsheets etc.) communicated via the Internet as attachments.

<table>
<thead>
<tr>
<th>Encryption Mode</th>
<th>Decryption Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs:</td>
<td>Inputs:</td>
</tr>
<tr>
<td>Plaintext image</td>
<td>Stegotext image</td>
</tr>
<tr>
<td>Covertext image</td>
<td>Private key (PIN)</td>
</tr>
<tr>
<td>Private Key (PIN)</td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td>Output:</td>
</tr>
<tr>
<td>Watermarked Covertext image</td>
<td>Decrypted watermark</td>
</tr>
<tr>
<td>Operation:</td>
<td>Operation:</td>
</tr>
<tr>
<td>Encrypt by clicking on button E (for Encrypt)</td>
<td>Decrypt by clicking on button D (for Dcrypt)</td>
</tr>
</tbody>
</table>
Authentication of e-Certificates
Authentication of e-Letters

Jonathan Blackledge
Stokes Professor of DSP
http://eleceng.dit.ie/blackledge

Dublin Institute of Technology
Kevin Street, Dublin 8, Ireland

Tel: +35 3 1 402 4707
Email: jonathan.blackledge@dit.ie

cc: Prof Eugene Coyle
Dr Marek Rebow

4 August, 2009

Dear Sir

Re: A Covert Encryption Method for Applications in Electronic Data Interchange

Please find enclosed the manuscript for the above paper which I am submitting to the ISAST Transactions on Electronics and Signal Processing.

Yours Faithfully

J M Blackledge
Stokes Professor
Camouflage

MS Word

(Format→Background→Fill Effect...)
(Format→Background→Printed Watermark...)

Jonathan Blackledge
Stokes Professor of DSP
http://eleceng.dit.ie/ebblackledge

Tel: +353 1 402 4707
Email: jonathan.blackledge@dit.ie

cc: Prof Eugene Coyle
Dr Marek Reboir

4 August, 2009

Dear Sir,

Re: A Covert Encryption Method for Applications in Electronic Data Interchange

Please find enclosed the manuscript for the above paper which I am submitting to the ISAST Transactions on Electronics and Signal Processing.

Yours Faithfully,

J M Blackledge
Stokes Professor
Other Applications

• **Disinformation:**
 Watermark one letter (consisting of disinformation to be intercepted) with another (secret information)

• **Plausible Deniability**
 Watermark one letter (consisting of information of value to an attacker) with another (consisting of secretive information) and encrypt the result

• **Cribb Camouflage**

• **Covert Key Exchange**
Hardcopy Authentication using Stochastic Diffusion

- The covertext model

\[I_3(x, y) = rm(x, y) \otimes I_1(x, y) + I_2(x, y) \]

...can not be applied to hardcopy applications due to the de-registration and distortion of pixels that occurs with covertext removal.

- However, we can use a **diffusion only** approach

\[I(x, y) = m(x, y) \otimes I_0(x, y) \]

Texture Coding
Print/Scan Cycle

\[I_{\text{print}} = p_{\text{print}} \otimes m \otimes I_0 \]

\[I_{\text{scan}} = p_{\text{scan}} \otimes I_{\text{print}} \]

Because convolution is \textit{commutative}

\[I_{\text{scan}} = p_{\text{scan}} \otimes p_{\text{print}} \otimes m \otimes I_0 \]

\[= m \otimes p_{\text{scan/print}} \otimes I_0 \]
Conditions Required for Hidden Data Retrieval

- I_{scan} must be re-sampled to the size of the original e-image I_0 before correlating with n

- Fidelity of the reconstruction critically depends on:
 - orientation
 - cropping

- Method is robust to *hardcopy soiling*
Applications of Texture Coding 1: **Identity Cards**

Printed at 600dpi; scanned with flat-bed scanner at 300dpi

Printed at 600dpi; scanned with mobile phone camera
Applications of Texture Coding 2: Signature Authentication
Applications of Texture Coding 3: Passport Authentication

Printed at 400dpi;

Scanned with flat-bed scanner at 300dpi
Applications of Texture Coding 4: Currency Authentication

Binary texture code printed using UV ink at 150 dpi

Scanned with camera at 300dpi under UV lamp
Applications of Texture Coding 5:

Statistical Authentication

Texture code generated of basic statistics associated with a scan of a high value bank bond and printed on the back of the bond at 300dpi; flat-bed scanned at 150dpi.
Attack and Robustness Analysis

Printed Document Authentication using Texture Coding,
Summary

• Fundamental steganographic model

\[I_3(x, y) = r m(x, y) \otimes I_1(x, y) + I_2(x, y) \]

Diffusion + Confusion
Ciphertext + Covertext

• Retrieval of \(I_1 \) requires knowledge of the Covertext and the Key used to compute \(m \)
Summary (Continued)

\[I_3(x, y) = rm(x, y) \otimes \otimes I_1(x, y) + I_2(x, y) \]

- **Self-Authentication:** \(I_1 = I_2 \)

- **Stegocrypt:** Based on *binarisation* of ciphertext

- Binary ciphertext embedded in covertext using *1-bit layer replacement method*
• **Diffusion + Confusion** model suitable for electronic-to-electronic (e-to-e) applications

• For hardcopy authentication, a **diffusion only** approach is used called **Texture Coding**

• Based on an application of the model

\[I(x, y) = m(x, y) \otimes \otimes I_0(x, y) \]
Research Project Proposal
FP7 Security

Can you tell the difference?

Can you tell the difference?
Q & A