

CNEOLATOCH

Friday 19th March, 2010: 11:00 -13:00

Image Restoration and Reconstruction

Stokes Professor Dublin Institute of Technology http://eleceng.dit.ie/blackledge

Distinguished Professor Warsaw University of Technology

Lectures co-financed by the European Union in scope of the European Social Fund

What is the Problem?

• Fundamental signal/imaging equation is

$$s = \mathcal{L}f + n$$

$$s$$
 - signal/image

- f information
- n noise
- $\ensuremath{\mathcal{L}}$ linear operator
- Given the signal/image, retrieve the information given knowledge of
 - linear operator
 - noise statistics
- This is an *inverse problem*

Example Applications

- Medical imaging CT and MRI
- X-ray Crystallography Phase retrieval
- Astronomy
- Microscopy
- Seismic prospecting
- Projection Tomography
- Diffraction Tomography
- Forensic image analysis
- Sound/source separation

Principal Publication

Imaging and Digital Image Processing

Mathematical and Computational Methods, Software Solutions and Some Applications

Jonathan M Blackledge

http://eleceng.dit.ie/papers/103.pdf

Contents of Presentation I

Part I:

- The inverse Helmholtz scattering problem
- Coherence .v. Incoherence
- The Importance of Phase
- The Phase Retrieval Problem
- Phase Imaging
- Deconvolution
- Case Study: The Wiener Filter
- Reconstruction from Bandlimited Data
- Summary
- Q & A + Interval (10 Minutes)

Contents of Presentation II

Part II:

- Scattering from Random Media
- Diffusion Based Model
- Inverse Diffusion Imaging
- Case Study: Fractional Diffusion Imaging
- Scattering from Tenuous Random Media
- Example results
- Open Problems
- Summary
- Q & A

Inverse Helmholtz Scattering: Conventional Solution Method

$$(\nabla^{2} + k^{2})u(\mathbf{r}, k) = -k^{2}\gamma(\mathbf{r})u(\mathbf{r}, k)$$
Model

$$\downarrow$$
Green's function transformation

$$\downarrow$$

$$u(\mathbf{r}, k) = u_{i}(\mathbf{r}, k) + k^{2}g(r, k) \otimes_{3}\gamma(\mathbf{r})u(\mathbf{r}, k)$$
Scattering

$$\downarrow$$
Born approximation

$$\downarrow$$

$$u_{s}(\mathbf{r}, k) = k^{2}g(r, k) \otimes_{3}\gamma(\mathbf{r})u_{i}(\mathbf{r}, k)$$
Single scattering
equation

Farfield Approximation

$$u_{s}(\mathbf{r},k) = k^{2}g(r,k) \otimes_{3} \gamma(\mathbf{r})u_{i}(\mathbf{r},k)$$

$$\downarrow$$
Farfield approximation
$$\downarrow$$

$$u_{s}(k\hat{\mathbf{n}}) \sim \mathcal{F}[\gamma(\mathbf{r})]$$
Fourier transform
$$\downarrow$$
Inverse scattering solution
$$\downarrow$$

$$\gamma(\mathbf{r}) \sim \mathcal{F}^{-1}[u_{s}(k\hat{\mathbf{n}})]$$
Inverse Fourier transform

Imaging Equation

 $u_s(k\hat{\mathbf{n}}) \sim \mathcal{F}[\gamma(\mathbf{r})]$ Detected signal $S(k\hat{\mathbf{n}}) \sim P(k\hat{\mathbf{n}})\mathcal{F}[\gamma(\mathbf{r})]$ Convolution Theorem $s(\mathbf{r}) \sim p(\mathbf{r}) \otimes_3 \gamma(\mathbf{r})$

- The detected signal gives a limited spectrum of the scattering function characterised by a <u>stationary</u>
 Point Spread Function (PSF)
- The result is based on the assumption that multiple scattering is negligible
- All non-ideal aspects of this equation including physical effects, signal detection noise etc. are compounded in an additive noise function so that the imaging equation becomes

$$s(\mathbf{r}) = p(\mathbf{r}) \otimes_3 \gamma(\mathbf{r}) + n(\mathbf{r})$$

Image = (PSF) convolved (Object Function) + Noise

- **Resolution:** determined by the spread of the PSF
- **Distortion:** determined by accuracy of model for PSF
- **Fuzziness:** determined by accuracy of model for object function
- Noise: determined by accuracy of convolution model for the image

 In coherent imaging measures of both the *amplitude and phase* are detected

$$u_s(k\hat{\mathbf{n}}) \sim \mathcal{F}[\gamma(\mathbf{r})]$$

 In incoherent imaging only a measure of the *amplitude (intensity)* is detected

$$u_s(k\hat{\mathbf{n}}) \mid^2 \sim \mid \mathcal{F}[\gamma(\mathbf{r})] \mid^2$$

Image Types

- An image is usually a measure of the intensity of a scattered field
- The model for a coherent image is

$$I_{\text{coherent}} = \mid p \otimes \otimes f + n \mid^2$$

• The model for an incoherent image is

$$I_{\text{incoherent}} = \mid p \mid^2 \otimes \otimes \mid f \mid^2 + \mid n \mid^2$$

The Importance of Phase

Original image (top-left), amplitude spectrum displayed using a logarithmic scale (top-centre), phase modulus spectrum (top-right), reconstruction using both the amplitude and phase spectra (bottom-left), *amplitude only reconstruction* (bottom-centre) and a *phase only reconstruction* (bottom-right).

Phase Retrieval Problem

Given $|F(k_x, k_y)|$, find f(x, y)

$$F(k_x, k_y) = \int_{-X/2}^{X/2} \int_{-Y/2}^{Y/2} f(x, y) \exp(-ik_x x) \exp(-ik_y y) dx dy$$

- Important in applications where only the intensity of a *Born scattering wavefield* can be measured
- This is always the case when the radiation is high frequency, e.g. *X-ray Crystallography*

$$s(x,y) = f(x,y) + iq(x,y)$$

$$= A(x, y) \exp[i\theta(x, y) \pm 2\pi i n], \quad n = 0, 1, 2, \dots$$

$$\theta(x, y) = \operatorname{Im}[\ln s(x, y)] \mp 2\pi n$$
$$\nabla \theta(x, y) = \operatorname{Im}[\nabla \ln s(x, y)]$$

Image generated of the Instantaneous Frequency $\mid \nabla \theta(x,y) \mid$

SAR FM Imaging

Optical image

Synthetic Aperture Radar Images

 $A(x,y) \mid \nabla \theta(x,y) \mid$

Seismic FM Imaging

f(x, y)

 $\nabla \theta(x,y)$

• Problem: Given that

$$s_{ij} = p_{ij} \otimes \otimes f_{ij} + n_{ij}$$

develop an algorithm to obtain an estimate of the **object function**

- Assumes a stationary process for image formation
- Many solutions to this problem which depend on:
 - the **PSF**
 - the *criterion* used
 - characteristics of the noise

Let s_i be a digital signal consisting of *N* real numbers i = 0, 1, 2, ..., N-1 that has been generated via the time invariant linear process (where p_i – the IRF – is known)

$$s_i = \sum_j p_{i-j} f_j + n_i \qquad \sum_j \equiv \sum_{j=0}^{N-1}$$

find an estimate for f_i of the form

$$\hat{f}_i = \sum_j q_j s_{i-j}$$

Solution

• Consider the least squares error N-1

$$e = \|f_i - \hat{f}_i\|_2^2 \equiv \sum_{i=0}^{N-1} (f_i - \hat{f}_i)^2$$

• e is a minimum when

$$\frac{\partial}{\partial q_k} e(q_j) = 0 \quad \forall k$$

i.e. when

$$\sum_{i=0}^{N-1} \left(f_i - \sum_j q_j s_{i-j} \right) s_{i-k} = 0$$

Solution (continued)

Using the convolution and correlation theorems

$$F_i S_i^* = Q_i S_i S_i^*$$
 $Q_i = \frac{S_i^* F_i}{|S_i|^2}$

• Since $S_i = P_i F_i + N_i$

$$Q_i = \frac{P_i^* |F_i|^2 + N_i^* F_i}{|P_i|^2 |F_i|^2 + |N_i|^2 + P_i F_i N_i^* + N_i P_i^* F_i^*}$$

Signal Independent Noise

- We can not compute Q_i because we do not know F_i or N_i
- However, we can expect that the information content of the signal f_i will not correlate with the noise n_i which means that

$$\sum_{j} n_{j-i} f_j = 0 \quad \text{and} \quad \sum_{j} f_{j-i} n_j = 0$$

 $N_i^* F_i = 0 \quad \text{and} \quad F_i^* N_i = 0$

Signal Independent Noise Solution

Given that the noise is signal independent

$$Q_i = \frac{P_i^* |F_i|^2}{|P_i|^2 |F_i|^2 + |N_i|^2}$$

and

Computing the Signal-to-Noise-Ratio

- **Problem:** How can we find $|F_i|^2 / |N_i|^2$?
- Suppose we have a linear stationary process whereby we can record a signal twice at different times. Then

$$s_i = p_i \otimes f_i + n_i$$

$$s'_i = p_i \otimes f_i + n'_i$$

$$n_i \odot n'_i = 0, \quad f_i \odot n_i = 0, \quad n_i \odot f_i = 0,$$

$$f_i \odot n'_i = 0, \quad n'_i \odot f_i = 0.$$

• Auto-correlating: $c_i = s_i \odot s_i$

$$C_i = S_i S_i^* = |P_i|^2 |F_i|^2 + |N_i|^2$$

• Cross-correlating:
$$c_i' = s_i \odot s_i'$$

$$C_i' = |P_i|^2 |F_i|^2$$

$$\frac{\mid N_i \mid^2}{\mid F_i \mid^2} = \left(\frac{C_i}{C'_i} - 1\right) \mid P_i \mid^2$$

Practical Implementation

• Given that the signal-to-noise power ratio is not usually known, i.e. $|F_i|^2 / |N_i|^2$ we approximate the filter as

$$Q_i \sim \frac{P_i^*}{\mid P_i \mid^2 + \Gamma} \qquad \Gamma \sim \frac{1}{(\text{SNR})^2}$$

• The value of the SNR (Signal-to-Noise-Ratio) becomes a user defined constant

FFT Algorithm for the Wiener Filter

snr=snr*snr
constant=1/snr

FFT Algorithm for the Wiener Filter (continued)

for i=1, 2, ..., n; do: denominator=pr(i)*pr(i)+pi(i)*pi(i)+constant fr(i)=pr(i)*sr(i)+pi(i)*si(i) fi(i)=pr(i)*si(i)-pi(i)*sr(i) fr(i)=fr(i)/denominator fi(i)=fi(i)/denominator enddo inverse_fft(fr,fi) for i=1, 2, ..., n; do: hatf(i)=fr(i)

enddo

Signal Restoration using the Wiener Filter

Image Restoration using the Wiener Filter

Image restoration using the Wiener filter.

Original image (left), Gaussian PSF (center) and restoration after application of the Wiener filter (right) using a standard deviation of 3 pixels (for the Gaussian PSF) and an SNR=1.

A Further Example

Inverse Filtering in CT

• **Back-projection function** is given by

$$B(x,y) = \frac{1}{\sqrt{x^2 + y^2}} \otimes \otimes f(x,y)$$

Reconstruction is given by

An X-ray tomogram of a normal abdomen showing the Liver (1), Stomach (2), Spleen (3) and Aorta (4).

$$f(x,y) =$$

$$\hat{F}_2^{-1}\left[\sqrt{k_x^2 + k_y^2}\widetilde{B}(k_x,k_y)\right]$$

Name of Filter	Filter	$\operatorname{Condition}(s)$
Inverse	$Q_{ij} = P_{ij}^* / \mid P_{ij} \mid^2$	$\operatorname{Min} \ \ n_{ij}\ $
Wiener	$Q_{ij} = \frac{P_{ij}^*}{ P_{ij} ^2 + F_{ij} ^2 / N_{ij} ^2}$	Min $ f_{ij} - q_{ij} \otimes \otimes s_{ij} ^2;$ $N_{ij}^* F_{ij} = 0, F_{ij}^* N_{ij} = 0$
PSE	$Q_{ij} = \left(\frac{1}{ P_{ij} ^2 + F_{ij} ^2 / N_{ij} ^2}\right)^{\frac{1}{2}}$	$ F_{ij} ^2 = Q_{ij}S_{ij} ^2;$ $N_{ij}^*F_{ij} = 0, F_{ij}^*N_{ij} = 0$
Matched	$Q_{ij} = P_{ij}^* / \mid N_{ij} \mid^2$	Max $\frac{ \sum_{i} \sum_{j} Q_{ij} P_{ij} ^{2}}{\sum_{i} \sum_{j} N_{ij} ^{2} Q_{ij} ^{2}}$
Max Entropy	$Q_{ij} = \frac{P_{ij}^*}{ P_{ij} ^2 + 1/\lambda}$	Max $-\sum_{i}\sum_{j}f_{ij}\ln f_{ij}$
Constrained	$Q_{ij} = \frac{P_{ij}^*}{ P_{ij} ^2 + \gamma G_{ij} ^2}$	$\operatorname{Min} \ \ g_{ij} \otimes \otimes f_{ij}\ ^2$

Image Reconstruction from Band-limited Data

Problem: Given

$$f_{BL}(x,y) = \sum_{n} \sum_{m} F_{nm} e^{i(k_n x + k_m y)}$$

$$F_{nm} = \int_{-X}^{X} \int_{-Y}^{Y} f(x, y) e^{-i(k_n x + k_m y)} dx dy$$

compute an estimate for f(x, y)

J

$$\hat{f}(x,y) = \sum_{n} \sum_{m} A_{nm} e^{i(k_n x + k_m y)}$$

$$E = \int_{-X-Y}^{X-Y} |f(x,y) - \hat{f}(x,y)|^2 dxdy$$

$$F_{pq} = 4XY \sum_{n} \sum_{m} A_{nm} \operatorname{sinc}[(k_p - k_n)X] \operatorname{sinc}[(k_q - k_m)Y]$$

Weighting Function Method

 $\hat{f}(x,y) = w(x,y) \sum \sum A_{nm} e^{i(k_n x + k_m y)}$ nm

$$E = \int_{-X-Y}^{X-Y} \int_{-X-Y}^{Y} |f(x,y) - \hat{f}(x,y)|^2 \frac{1}{w(x,y)} dx dy.$$

$$\hat{f}(x,y) = \frac{w(x,y)}{w_{BL}(x,y)} f_{BL}(x,y)$$

Example Reconstruction

Reconstruction (bottom-right) of a test object (top-left) function from band-limited data (top-right) using prior information (bottom-left).

- Most image restoration/reconstruction algorithms are based on a *stationary convolution model with additive noise*
- The model assumes that the scattered field is detected/measured in the *far field* and is the result of *single scattering processes*
- Image coherence is determined by whether a measure of the phase information can be obtained

- We shall consider diffusion based models for the scattering of waves from random media
- Develop inverse solutions for diffusion imaging
- Develop inverse solution for *fractional diffusion imaging*

Questions + Interval (10 Minutes)

Part II: Contents

Part II:

- Scattering from Random Media
- Diffusion Based Model
- Inverse Diffusion Imaging
- Case Study: Fractional Diffusion Imaging
- Scattering from Tenuous Random Media
- Example results
- Open Problems
- Summary
- Q & A

Scattering From Random Media

Basic Problem: Given that

$$\left(\nabla^2 - \frac{1}{c^2(\mathbf{r})} \frac{\partial^2}{\partial t^2}\right) u(\mathbf{r}, t) = 0$$

compute $I = |u|^2$ for known $\Pr[c(\mathbf{r})]$

Scattered wave amplitude in the far field is determined by the Fourier transform

$$A(\hat{\mathbf{N}}, k) = k^2 \int_{V} \exp(-ik\hat{\mathbf{N}} \cdot \mathbf{r})\gamma(\mathbf{r})d^3\mathbf{r}$$

 $\frac{1}{c^2} = \frac{1}{c_0^2} (1+\gamma) \quad \hat{\mathbf{N}} = \hat{\mathbf{n}}_s - \hat{\mathbf{n}}_i$

 Intensity determined by Fourier transform of the autocorrelation function

$$I(\hat{\mathbf{N}},k) = k^4 \int_{V} \exp(-ik\hat{\mathbf{N}}\cdot\mathbf{r})\Gamma(\mathbf{r})d^3\mathbf{r}$$

$$\Gamma(\mathbf{r}) = \int_{V} \gamma(\mathbf{r}') \gamma^* (\mathbf{r}' + \mathbf{r}) d^3 \mathbf{r}'$$

• Requires a model for the *autocorrelation function* that best characterises the random medium, i.e. the *Power Spectral Density Function*

Examples of Power Spectral Density Functions

 $\Gamma(\mathbf{r}) \iff |\widetilde{\gamma}(\mathbf{k})|^2$

Gaussian Random Medium

$$|\widetilde{\gamma}(\mathbf{k})|^2 = \widetilde{\gamma}_0^2 \exp\left(-\frac{k^2}{k_0^2}\right)$$

• Random *Fractal* Medium

$$|\widetilde{\gamma}(\mathbf{k})|^2 \sim \frac{1}{k^{2q}} \qquad \Gamma(\mathbf{r}) \sim \frac{1}{r^{3-q}}$$

• Solution depends on the condition $\frac{\|u_s\|}{\|u_i\|} << 1$

which translates to: Wavelength >> V

 Incompatible with imaging systems in which the resolution is based on

Wavelength ~ V

Strong Scattering Model

wavefield generated by single scattering events + wavefield generated by double scattering events + wavefield generated by triple scattering events +

Physically sound but mathematically speaking, a mess waiting to happen!!

Diffusion Based Model

 Consider multiple scattering events to be analogous to random walks of 'light rays' propagating between scattering sites:

$$D\nabla^2 I(\mathbf{r}, t) = \frac{\partial}{\partial t} I(\mathbf{r}, t), \quad \mathbf{r} \in V.$$

• Image plane solution (for an infinite domain) is

$$I(x, y, t) = \frac{1}{4\pi Dt} \exp\left[-\left(\frac{(x^2 + y^2)}{4Dt}\right)\right] \otimes_2 I_0(x, y)$$

 $I(x, y, 0) = I_0(x, y)$

Wave to Diffusion Equation *Transformation*

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} u = 0$$

$$u(x, y, z, t) = \phi(x, y, z, t) \exp(i\omega t)$$

$$u^*(x, y, z, t) = \phi^*(x, y, z, t) \exp(-i\omega t)$$

Conditional Equation

$$\nabla^2 u = \exp(i\omega t)\nabla^2 \phi$$

$$\frac{\partial^2}{\partial t^2}u = \exp(i\omega t)\left(\frac{\partial^2}{\partial t^2}\phi + 2i\omega\frac{\partial\phi}{\partial t} - \omega^2\phi\right)$$

$$\simeq \exp(i\omega t) \left(2i\omega \frac{\partial \phi}{\partial t} - \omega^2 \phi \right) \qquad \qquad \left| \frac{\partial^2 \phi}{\partial t^2} \right| << 2\omega \left| \frac{\partial \phi}{\partial t} \right|$$

$$(\nabla^2 + k^2)\phi = \frac{2ik}{c}\frac{\partial\phi}{\partial t} \qquad (\nabla^2 + k^2)\phi^* = -\frac{2ik}{c}\frac{\partial\phi^*}{\partial t}$$

Diffusion Equation for the *Intensity*

$$\phi^* \nabla^2 \phi - \phi \nabla^2 \phi^* = \frac{2ik}{c} \left(\phi^* \frac{\partial \phi}{\partial t} + \phi \frac{\partial \phi^*}{\partial t} \right)$$

$$\nabla^2 I - 2\nabla \cdot (\phi \nabla \phi^*) = \frac{2ik}{c} \frac{\partial I}{\partial t}$$

$$I = \phi \phi^* = \mid \phi \mid^2$$

Conditional Result

$$k = k_0 - i\kappa$$
 (i.e. $\omega = \omega_0 - i\kappa c$)

$$D\nabla^2 I + 2\operatorname{Re}[\nabla \cdot (\phi \nabla \phi^*)] = \frac{\partial I}{\partial t}$$

$$\operatorname{Im}[\nabla \cdot (\phi \nabla \phi^*)] = -\frac{k_0}{c} \frac{\partial I}{\partial t}$$

$$D = c/2\kappa$$
 $\operatorname{Re}[\nabla \cdot (\phi \nabla \phi^*)] = 0$

Justification

$$\operatorname{Re} \int_{V} \nabla \cdot (\phi \nabla \phi^{*}) d^{3} \mathbf{r} = \operatorname{Re} \oint_{S} \phi \nabla \phi^{*} \cdot \hat{\mathbf{n}} d^{2} \mathbf{r}$$

- Formally consider the surface to be at infinity so that diffusion occurs in the *infinite domain*
- Physically, light diffusers do not have a defined boundary

Source imaged through air

Source imaged through steam

Source convolved with a Gaussian PSF

Inverse Solution 1: Restoration of a Diffused Image

$$\frac{\partial^2 I}{\partial t^2} = D\nabla^2 \frac{\partial I}{\partial t} = D^2 \nabla^4 I$$
$$\frac{\partial^3 I}{\partial t^3} = D\nabla^2 \frac{\partial^2 I}{\partial t^2} = D^3 \nabla^6 I$$

$$\left[\frac{\partial^n}{\partial t^n}I(x,y,t)\right]_{t=T} = D^n \nabla^{2n}I(x,y,T).$$

$$I_0(x,y) = I(x,y,T) + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} (DT)^n \nabla^{2n} I(x,y,T)$$

~ $I(x,y,T) - DT \nabla^2 I(x,y,T), \quad DT << 1.$

High-Emphasis Filter

 $I_0(x,y) = I(x,y) - \nabla^2 I(x,y)$ DT = 1

 $\nabla^2 I_{ij} = I_{(i+1)j} + I_{(i-1)j} + I_{i(j+1)} + I_{i(j-1)} - 4I_{ij}$

$$I_{ij}^{0} = I_{ij} - \nabla^2 I_{ij} = 5I_{ij} - I_{(i+1)j} - I_{(i-1)j} - I_{i(j+1)} - I_{i(j-1)j}$$

$$I_{ij}^0 \equiv I_0(i,j)$$

Finite Impulse Response (FIR) Filter: *First Order*

Finite Impulse Response (FIR) Filter: Second Order

 $I - \nabla^2 I + \frac{1}{2} \nabla^4 I$

Example Application

Case Study: Fractional Diffusion Imaging

- Problem: How can we model intermediate scattering processes (not weak or strong)
- Solution: Consider a fractional diffusion model compounded in the fractional PDE

$$\nabla^2 I(\mathbf{r}, t) - \sigma^q \frac{\partial^q}{\partial t^q} I(\mathbf{r}, t) = I_0(\mathbf{r}, t)$$
$$D^q = 1/\sigma^q \qquad q \in [1, 2]$$

- Derive an Optical Transfer Function that models the effect of light scattering from a tenuous random medium
- Tenuous medium?
 - ~ 10⁶ light scattering particles m⁻³
- Goal of presentation: To generate interest in the use of *fractional dynamics* for image synthesis, processing and analysis

'Stardust in Perseus' http://apod.nasa.gov/apod/ap071129.html

Applications include processing Hubble Space Telescope images when light has propagated through cosmic dust

$$I(\mathbf{r},t) = G(r,t) \otimes_2 \otimes_t I_0(\mathbf{r},t)$$

2D Green's Function Solution

$$G(r,t) = \frac{1}{\sqrt{r}} \frac{1}{\sigma^{q/4} t^{1-q/4}} - \sqrt{r} \sigma^{q/4} \delta^{q/4}(t)$$

$$+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)!} r^{(2n+1)/2} \sigma^{3nq/4} \delta^{3nq/4}(t).$$

Fractional diffusion equation and Green function approach: Exact solutions E.K. Lenz et al, Physica A 360 (2006) 215–226

For
$$\sigma \to 0,$$

$$G(r,t) = \frac{1}{\sqrt{r}\sigma^{q/4}t^{1-q/4}}$$

• Spatial solution at any time *t* is given by

$$I(x,y) = \frac{1}{(x^2 + y^2)^{\frac{1}{4}}} \otimes_2 I_0(x,y)$$

If the source function is white noise, then:

- Temporal component of the Green's function yields random fractal noise
- Spatial component of Green's function yields a random fractal surface (Mandelbrot surface) with a Fractal Dimension of 2.5

 $I(x,y) = p(x,y) \otimes_2 I_0(x,y) + n(x,y)$

- **Problem:** Find an estimate for $I_0(x, y)$
- Assumption: $\Pr[n(x, y)]$ is Gaussian

Strong scatteringStrong scattering in ain a random mediumtenuous random medium $p(x,y) = \exp\left[-\left(\frac{x^2 + y^2}{4DT}\right)\right]$ $p(x,y) = \frac{1}{(x^2 + y^2)^{\frac{1}{4}}}$

• A Gaussian noise assumption yields the following *a Posteriori* (inverse) filter

$$F(k_x, k_y) = \frac{P^*(k_x, k_y)}{|P(k_x, k_y)|^2 + \sigma_n^2 / \sigma_{I_0}^2}$$

where σ_{I_0/σ_n} defines the SNR

 Adaptive filtering is used based on searching for a reconstruction with a *maximum average gradient* for *minimum zero crossings*

Example Results

Diffusion

Fractional Diffusion

Application of fractional diffusion imaging in Light Management Technology:

Quality control for mass production of diffusers

http://www.microsharp.co.uk

Manufacture of Microsharp Light Diffusers based on q

• Light diffusion based model

$$I_0(x,y) = I(x,y,T) - DT\nabla^2 I(x,y,T)$$

Fractional light diffusion based model

$$I_0(x,y) = I(x,y,T) - \frac{D^q T}{\Gamma(q)} \nabla^2 I(x,y,T)$$

Diffusion and Fractional Diffusion based Models for Multiple Light Scattering and Image Analysis, J M Blackledge, ISAST Trans. in Electronics and Signal Processing, ISSN 1797-2329, No. 1, Vol. 1, 38 - 60, 2007

- The Diffusion Equation has been used to model strong scattering processes
- The inverse scattering problem reduces to: *'Deconvolution for a Gaussian PSF'*
- We have modelled intermediate scattering using a *Fractional Diffusion Equation* and shown that, for a highly diffuse medium, the *Optical Transfer Function* is

$$(k_x^2 + k_y^2)^{-0.75}$$

Open Problems

- What is the effect of including further terms in the fractional Green's function?
 i.e. can we produce an OTF that:
 - does not rely on an asymptotic solution
 - is of practical value (e.g. for deconvolution)

• Method applies to incoherent imaging only, i.e. a fractional diffusion equation for the intensity.

How can we use the same approach to model intermediate coherent scattering?

Diffusion MRI

$$\mathbf{D}\nabla^2 I - \frac{\partial I}{\partial t} = 0$$
$$\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

Questions

Contents of Presentation

- Light Scattering from Random Media
 - Weak scattering model
 - Strong scattering model
 - Diffusion based model for multiple scattering
- Fractional Diffusion: A Model for Intermediate Scattering
- A Filter using Bayesian Estimation
- Some Example Results
- Questions